

cssselect: CSS Selectors for Python

[image: PyPI Version]
 [https://pypi.python.org/pypi/cssselect][image: Supported Python Versions]
 [https://pypi.python.org/pypi/cssselect][image: Tests]
 [https://github.com/scrapy/cssselect/actions/workflows/tests.yml][image: Coverage report]
 [https://codecov.io/github/scrapy/cssselect?branch=master]cssselect is a BSD-licensed Python library to parse CSS3 selectors [https://www.w3.org/TR/selectors-3/] and
translate them to XPath 1.0 [https://www.w3.org/TR/xpath/all/] expressions.

XPath 1.0 [https://www.w3.org/TR/xpath/all/] expressions can be used in lxml [https://lxml.de/] or another XPath engine to find
the matching elements in an XML or HTML document.

Find the cssselect online documentation at https://cssselect.readthedocs.io.

Quick facts:

	Source, issues and pull requests on GitHub [https://github.com/scrapy/cssselect]

	Releases on PyPI [https://pypi.org/project/cssselect/]

	Install with pip install cssselect

Contents

	Quickstart

	User API

	Supported selectors

	Customizing the translation

	Namespaces

	Changelog

Quickstart

Use HTMLTranslator for HTML documents, GenericTranslator
for “generic” XML documents. (The former has a more useful translation
for some selectors, based on HTML-specific element types or attributes.)

>>> from cssselect import GenericTranslator, SelectorError
>>> try:
... expression = GenericTranslator().css_to_xpath('div.content')
... except SelectorError:
... print('Invalid selector.')
...
>>> print(expression)
descendant-or-self::div[@class and contains(concat(' ', normalize-space(@class), ' '), ' content ')]

The resulting expression can be used with lxml’s XPath engine [http://lxml.de/xpathxslt.html#xpath]:

>>> from lxml.etree import fromstring
>>> document = fromstring('''
... <div id="outer">
... <div id="inner" class="content body">text</div>
... </div>
... ''')
>>> [e.get('id') for e in document.xpath(expression)]
['inner']

User API

In CSS3 Selectors terms, the top-level object is a group of selectors [http://www.w3.org/TR/selectors/#grouping], a
sequence of comma-separated selectors. For example, div, h1.title + p
is a group of two selectors.

	
cssselect.parse(css: str) → List[cssselect.parser.Selector]

	Parse a CSS group of selectors.

If you don’t care about pseudo-elements or selector specificity,
you can skip this and use css_to_xpath().

	Parameters

	css – A group of selectors as a string.

	Raises

	SelectorSyntaxError on invalid selectors.

	Returns

	A list of parsed Selector objects, one for each
selector in the comma-separated group.

	
class cssselect.Selector

	Represents a parsed selector.

selector_to_xpath() accepts this object,
but ignores pseudo_element. It is the user’s responsibility
to account for pseudo-elements and reject selectors with unknown
or unsupported pseudo-elements.

	
canonical() → str

	Return a CSS representation for this selector (a string)

	
pseudo_element = None

	

	
	Selector

	Pseudo-element

	CSS3 syntax

	a::before

	'before'

	Older syntax

	a:before

	'before'

	From the Lists3 [http://www.w3.org/TR/2011/WD-css3-lists-20110524/#marker-pseudoelement] draft,
not in Selectors3

	li::marker

	'marker'

	Invalid pseudo-class

	li:marker

	None

	Functional

	a::foo(2)

	FunctionalPseudoElement(…)

	
specificity() → Tuple[int, int, int]

	Return the specificity [http://www.w3.org/TR/selectors/#specificity] of this selector as a tuple of 3 integers.

	
class cssselect.FunctionalPseudoElement(name: str, arguments: Sequence[Token])

	Represents selector::name(arguments)

	
name

	The name (identifier) of the pseudo-element, as a string.

	
arguments

	The arguments of the pseudo-element, as a list of tokens.

Note: tokens are not part of the public API,
and may change between cssselect versions.
Use at your own risks.

	
class cssselect.GenericTranslator

	Translator for “generic” XML documents.

Everything is case-sensitive, no assumption is made on the meaning
of element names and attribute names.

	
css_to_xpath(css: str, prefix: str = 'descendant-or-self::') → str

	Translate a group of selectors to XPath.

Pseudo-elements are not supported here since XPath only knows
about “real” elements.

	Parameters

	
	css – A group of selectors as a string.

	prefix – This string is prepended to the XPath expression for each selector.
The default makes selectors scoped to the context node’s subtree.

	Raises

	SelectorSyntaxError on invalid selectors,
ExpressionError on unknown/unsupported selectors,
including pseudo-elements.

	Returns

	The equivalent XPath 1.0 expression as a string.

	
selector_to_xpath(selector: cssselect.parser.Selector, prefix: str = 'descendant-or-self::', translate_pseudo_elements: bool = False) → str

	Translate a parsed selector to XPath.

	Parameters

	
	selector – A parsed Selector object.

	prefix – This string is prepended to the resulting XPath expression.
The default makes selectors scoped to the context node’s subtree.

	translate_pseudo_elements – Unless this is set to True (as css_to_xpath() does),
the pseudo_element attribute of the selector
is ignored.
It is the caller’s responsibility to reject selectors
with pseudo-elements, or to account for them somehow.

	Raises

	ExpressionError on unknown/unsupported selectors.

	Returns

	The equivalent XPath 1.0 expression as a string.

	
class cssselect.HTMLTranslator(xhtml: bool = False)

	Translator for (X)HTML documents.

Has a more useful implementation of some pseudo-classes based on
HTML-specific element names and attribute names, as described in
the HTML5 specification [http://www.w3.org/TR/html5/links.html#selectors]. It assumes no-quirks mode.
The API is the same as GenericTranslator.

	Parameters

	xhtml – If false (the default), element names and attribute names
are case-insensitive.

Exceptions

	
exception cssselect.SelectorError

	Common parent for SelectorSyntaxError and
ExpressionError.

You can just use except SelectorError: when calling
css_to_xpath() and handle both exceptions types.

	
exception cssselect.SelectorSyntaxError

	Parsing a selector that does not match the grammar.

	
exception cssselect.ExpressionError

	Unknown or unsupported selector (eg. pseudo-class).

Supported selectors

This library implements CSS3 selectors as described in the W3C specification [http://www.w3.org/TR/2011/REC-css3-selectors-20110929/].
In this context however, there is no interactivity or history of visited links.
Therefore, these pseudo-classes are accepted but never match anything:

	:hover

	:active

	:focus

	:target

	:visited

Additionally, these depend on document knowledge and only have a useful
implementation in HTMLTranslator. In GenericTranslator,
they never match:

	:link

	:enabled

	:disabled

	:checked

These applicable pseudo-classes are not yet implemented:

	*:first-of-type, *:last-of-type, *:nth-of-type,
*:nth-last-of-type, *:only-of-type. All of these work when
you specify an element type, but not with *

On the other hand, cssselect supports some selectors that are not
in the Level 3 specification.

These parts of the Level 4 specification are supported (note that a large part
of the Level 4 additions is not applicable to cssselect similarly to :hover
or not representable in XPath 1.0 so the complete specification is unlikely to
be implemented):

	The :scope pseudo-class. Limitation: it can only be used at a start of a
selector.

	The :is(), :where() and :has() pseudo-classes. Limitation:
:has() cannot contain nested :has() or :not().

These are non-standard extensions:

	The :contains(text) pseudo-class that existed in an early draft [http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#content-selectors]
but was then removed.

	The != attribute operator. [foo!=bar] is the same as
:not([foo=bar]).

	:not() accepts a sequence of simple selectors, not just single
simple selector. For example, :not(a.important[rel]) is allowed,
even though the negation contains 3 simple selectors.

Customizing the translation

Just like HTMLTranslator is a subclass of GenericTranslator,
you can make new sub-classes of either of them and override some methods.
This enables you, for example, to customize how some pseudo-class is
implemented without forking or monkey-patching cssselect.

The “customization API” is the set of methods in translation classes
and their signature. You can look at the source code [https://github.com/scrapy/cssselect/blob/master/cssselect/xpath.py] to see how it works.
However, be aware that this API is not very stable yet. It might change
and break your sub-class.

Namespaces

In CSS you can use namespace-prefix|element, similar to
namespace-prefix:element in an XPath expression. In fact, it maps
one-to-one. How prefixes are mapped to namespace URIs depends on the
XPath implementation.

Changelog

Version 1.2.0

Released on 2022-10-27.

	Drop support for Python 2.7, 3.4-3.6, add support for Python 3.7-3.11.

	Add type annotations (PEP 484 and PEP 561).

	More features from the CSS Selectors Level 4:

	The :is() pseudo-class.

	The :where() pseudo-class.

	The :has() pseudo-class, with some limitations.

	Fix parsing :scope after a comma.

	Add parentheses to fix condition precedence in some cases.

	Private API changes related to the removal of the Python 2 support:

	Remove _unicode and _unichr aliases from csselect.parser.

	Remove _basestring and _unicode aliases from csselect.xpath.

	Deprecate csselect.xpath._unicode_safe_getattr() and change it to just
call getattr().

	Include tests in the PyPI tarball.

	Many CI additions and improvements.

	Improve the test coverage.

Version 1.1.0

Released on 2019-08-09.

	Support for the :scope selector, which allows to access immediate
children of a selector.

	Support for the |E syntax for type selectors without a namespace.

	A new selector method, canonical, returns the CSS expression of the
selector, as a string.

Version 1.0.3

Released on 2017-12-27.

	Fix artifact uploads to pypi

Version 1.0.2

Released on 2017-12-26.

	Drop support for Python 2.6 and Python 3.3.

	Fix deprecation warning in Python 3.6.

	Minor cleanups.

Version 1.0.1

Released on 2017-01-10.

	Add support for Python 3.6.

	Documentation hosted on Read the Docs [https://cssselect.readthedocs.io/]

Version 1.0.0

Released on 2016-10-21.

	Add code coverage reports.

	Fix :nth-*(an+b) pseudo-classes selectors.
(except *:nth-child() which looks untranslatable to XPath 1.0.)

Version 0.9.2

Released on 2016-06-15.

	Distribute as universal wheel.

	Add support for Python 3.3, 3.4 and 3.5.

	Drop support for Python 2.5 as testing is getting difficult.

	Improve tests on pseudo-elements.

Version 0.9.1

Released on 2013-10-17.

	Backward incompatible change from 0.9:
selector_to_xpath() defaults to
ignoring pseudo-elements,
as it did in 0.8 and previous versions.
(css_to_xpath() doesn’t change.)

	Drop official support for Python 2.4 and 3.1,
as testing was becoming difficult.
Nothing will break overnight,
but future releases may on may not work on these versions.
Older releases will remain available on PyPI.

Version 0.9

Released on 2013-10-11.

Add parser support for functional
pseudo-elements.

Update:
This version accidentally introduced a backward incompatible change:
selector_to_xpath() defaults to
rejecting pseudo-elements instead of ignoring them.

Version 0.8

Released on 2013-03-15.

Improvements:

	#22 [https://github.com/SimonSapin/cssselect/issues/22]
Let extended translators override what XPathExpr class is used

	#19 [https://github.com/SimonSapin/cssselect/issues/19]
Use the built-in lang() XPath function
for implementing the :lang() pseudo-class
with XML documents.
This is probably faster than ancestor-or-self::.

Bug fixes:

	#14 [https://github.com/SimonSapin/cssselect/issues/14]
Fix non-ASCII pseudo-classes. (Invalid selector instead of crash.)

	#20 [https://github.com/SimonSapin/cssselect/issues/20]
As per the spec, elements containing only whitespace are not considered empty
for the :empty pseudo-class.

Version 0.7.1

Released on 2012-06-14. Code name remember-to-test-with-tox.

0.7 broke the parser in Python 2.4 and 2.5; the tests in 2.x.
Now all is well again.

Also, pseudo-elements are now correctly made lower-case. (They are supposed
to be case-insensitive.)

Version 0.7

Released on 2012-06-14.

Bug fix release: see #2, #7 and #10 on GitHub.

	The tokenizer and parser have been rewritten to be much closer to the
specified grammar. In particular, non-ASCII characters and backslash-escapes
are now handled correctly.

	Special characters are protected in the output so that generated XPath
exrpessions should always be valid

	The ~=, ^= and *= attribute operators now correctly never match
when used with an empty string.

Version 0.6.1

Released on 2012-04-25.

Make sure that internal token objects do not “leak” into the public API and
Selector.pseudo_element is an unicode string.

Version 0.6

Released on 2012-04-24.

	In setup.py use setuptools/distribute if available, but fall back
on distutils.

	Implement the :lang() pseudo-class, although it is only based on
xml:lang or lang attributes. If the document language is known from
some other meta-data (like a Content-Language HTTP header or <meta>
element), a workaround is to set a lang attribute on the root element.

Version 0.5

Released on 2012-04-20.

	Fix case sensitivity issues.

	Implement HTMLTranslator based on the HTML5 specification [http://www.w3.org/TR/html5/links.html#selectors]
rather than guessing; add the xhtml parameter.

	Several bug fixes and better test coverage.

Version 0.4

Released on 2012-04-18.

	Add proper support for pseudo-elements

	Add specificity calculation

	Expose the parse() function and the parsed Selector objects
in the API.

	Add the selector_to_xpath() method.

Version 0.3

Released on 2012-04-17.

	Fix many parsing bugs.

	Rename the Translator class to GenericTranslator

	There, implement :target, :hover, :focus, :active
:checked, :enabled, :disabled, :link and :visited
as never matching.

	Make a new HTML-specific HTMLTranslator subclass. There, implement
:checked, :enabled, :disabled, :link and :visited
as appropriate for HTML, with all links “not visited”.

	Remove the css_to_xpath function. The translator classes
are the new API.

	Add support for :contains() back, but case-sensitive. lxml will
override it to be case-insensitive for backward-compatibility.

Discussion is open if anyone is interested in implementing eg. :target
or :visited differently, but they can always do it in a Translator
subclass.

Version 0.2

Released on 2012-04-16.

	Remove the CSSSelector class. (The css_to_xpath() function is now
the main API.)

	Remove support for the :contains() pseudo-class.

These changes allow cssselect to be used without lxml. (Hey, this was
the whole point of this project.) The tests still require lxml, though.
The removed parts are expected to stay in lxml for backward-compatibility.

:contains() only existed in an early draft [http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#content-selectors]
of the Selectors specification, and was removed before Level 3 stabilized.
Internally, it used a custom XPath extension function which can be
difficult to express outside of lxml.

	Separate the XPath translation from the parsed objects into a new
Translator class.

Subclasses of Translator can be made to change the way that some selector
(eg. a pseudo-class) is implemented.

Version 0.1

Released on 2012-04-13.

Extract lxml.cssselect from the rest of lxml and make it a stand-alone project.

Commit ea53ceaf7e44ba4fbb5c818ae31370932f47774e was taken on 2012-04-11
from the ‘master’ branch of lxml’s git repository. This is somewhere
between versions 2.3.4 and 2.4.

The commit history has been rewritten to:

	Remove lxml files unrelated to cssselect

	Import the early history from the ‘html’ branch in the old SVN repository

	Fix author names in commits from SVN

This project has its own import name, tests and documentation. But the
code itself is unchanged and still depends on lxml.

Earlier history

Search for cssselect in lxml’s changelog [https://github.com/lxml/lxml/blob/master/CHANGES.txt]

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cssselect	

Index

 A
 | C
 | E
 | F
 | G
 | H
 | N
 | P
 | S

A

 	
 	arguments (cssselect.FunctionalPseudoElement attribute)

C

 	
 	canonical() (cssselect.Selector method)

 	
 	css_to_xpath() (cssselect.GenericTranslator method)

 	cssselect (module)

E

 	
 	ExpressionError

F

 	
 	FunctionalPseudoElement (class in cssselect)

G

 	
 	GenericTranslator (class in cssselect)

H

 	
 	HTMLTranslator (class in cssselect)

N

 	
 	name (cssselect.FunctionalPseudoElement attribute)

P

 	
 	parse() (in module cssselect)

 	
 	pseudo_element (cssselect.Selector attribute)

S

 	
 	Selector (class in cssselect)

 	selector_to_xpath() (cssselect.GenericTranslator method)

 	
 	SelectorError

 	SelectorSyntaxError

 	specificity() (cssselect.Selector method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 cssselect: CSS Selectors for Python

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

